KERRBB

Multi-temperature blackbody model for a thin, steady-state, general relativistic accretion disk around a Kerr black hole, developed by Li et al. 2004 (astro-ph/0411583). Includes all relativistic effects and self-irradiation of the disk, and allows for a non-zero torque at the inner boundary of the disk (which is assumed to be at the marginally stable orbit). However, zero torque ($\eta = 0$) is recommended in most cases since it is found that the effect of a nonzero torque can, to a good approximation, be absorbed into a zero torque model by adjusting some of the model parameters. KERRBB is intended as an extension of GRAD, which is limited to a non-rotating black hole and does not include self-irradiation.

- **par1** = η , ratio of the disk power produced by a torque at the inner boundary to that arising from accretion ($0 \le \eta \le 1$). $\eta = 0$ corresponds to the case of a standard disk with zero torque at the inner edge
- **par2** = a, dimensionless spin of the black hole ($-1 \le a \le 0.9999$)
- **par3** = ϑ_{obs} , disk inclination angle (deg; $0 \le \vartheta_{obs} \le 85$; 0 for face-on)
- par4 = M, mass of the black hole (solar units)
- **par5** = $\dot{M}_{\rm eff}$, "effective" mass accretion rate (10¹⁸ g/sec). When $\eta = 0$, it is just the mass accretion rate of the disk. When $\eta > 0$, the effective mass accretion rate = $(1 + \eta)$ times the true mass accretion rate
- par6 = D, distance (kpc)
- **par7** = $f_{\rm col}$, spectral hardening factor, $T_{\rm col}/T_{\rm eff}$. Should be greater than 1, and is believed to be in the range 1.5 1.9 for accretion disks around stellar-mass black holes
- **par8** = rflag, a flag to switch on/off the effect of self-irradiation (not allowed to be free). If positive, self-irradiation is included; if ≤ 0 , self-irradiation is not included
- **par9** = lflag, a flag to switch on/off the effect of limb-darkening (not allowed to be free). If positive, disk emission is limb-darkened; if ≤ 0 , disk emission is assumed to be isotropic
- \mathbf{K} = normalization, should be fixed to 1